# **B**38 Tropical agro-wastes for environmentally friendly non-load bearing bio-composites and comparative analysis with wood panels

MANSOUR Souha<sup>1,2</sup>, VIRETTO Amandine<sup>1,2</sup>, THEVENON Marie-France<sup>1,2</sup>, Brancheriau Loïc<sup>1,2</sup>

<sup>1</sup>CIRAD, UPR BioWooEB, F-34398 Montpellier, France. <sup>2</sup>BioWooEB, Univ Montpellier, CIRAD, Montpellier, France. souha.mansour@cirad.fr



#### Context



- > Cote d'Ivoire is the first cocoa bean producer in the world with 2.200.000 thousand tons which is equivalent to 50.25 billion pod husks.
- Incorporating agricultural waste into biocomposite production is advantageous, as these waste materials lack nutritional value and are often abandoned in plantation areas [1], posing disease risks [2].
- Within the BIO4AFRICA project, five types of agricultural waste: cocoa pods, millet stalks, oil palm empty fruit bunches, rice husks and typha, are mixed with a binder to create medium-density fiberboards for non-load-bearing applications.

## Main objectives



- > Panels produced will be compared with wood particle boards
- Characterization tests will be conducted on both biocomposites produced and control wood particle boards

Images (x8)







# **First results on biomass characterization**



**Biomass particle size distribution** 

## Conclusions

- Cocoa particle distribution is centered around 2.5 mm  $\rightarrow$  related to highest lignin content.
- $\Box$  Rice is the most thermal stable  $\rightarrow$  related to highest silica content.
- Different fibers/binder ratios were carried out to produce biocomposites materials.
- Obtained biocomposites present a resilience value around 1.5 ± 0.3 whatever the fibers/binder ratio and a significant water absorption which is less pronounced for the 60/40 biocomposite.

#### Perspectives

| Biomass | Apparent<br>density<br>(kg/m <sup>3</sup> ) | Real density<br>(kg/m <sup>3</sup> ) | Humidity<br>(%) | Main<br>Constituent<br>loss (%)<br>TGA | Degradation<br>temperature<br>(°C) |
|---------|---------------------------------------------|--------------------------------------|-----------------|----------------------------------------|------------------------------------|
| Cocoa   | 484.7                                       | 298.4                                | $5.5 \pm 0.1$   | 52 ± 2                                 | 317 ± 3                            |
| Millet  | 93.6                                        | 123.0                                | $5.9 \pm 0.1$   | 59 ± 2                                 | 317 ± 4                            |
| Palm    | 157.1                                       | 127.3                                | $4.8 \pm 0.1$   | 64 ± 1                                 | 318 ± 5                            |
| Rice    | 150.7                                       | 148.3                                | $4.9 \pm 0$     | 58 ± 2                                 | 348 ± 2                            |
| Typha   | 65.9                                        | 132.6                                | $4.3 \pm 0.1$   | 62 ± 3                                 | 333 ± 4                            |

- □ The next step is finalizing the protocol to fabricate and characterize the biocomposite materials.
- □ The particle size will be studied and will have a significant effect on the material properties.
- Natural binders will be incorporated to substitute MUF and to produce a fully biobased biocomposite.

Main properties of the different biomass

#### References

cirad

[1] Abdul, H. P. S., et al., Oil Palm Biomass Fibres and Recent Advancement in Oil Palm Biomass Fibres Based Hybrid Biocomposites. Composites and Their Applications, 2014.

[2] Veloso, M. C. R., & et al., Sustainable valorization of recycled low-density polyethylene and cocoa biomass for composite production. Environmental Science and Pollution Research, 2021

#### **Acknowledgments** :



Bio4Africa project was financially supported by EU Horizon 2020 (Grant Agreement 101000762)

