







### Séminaire en ligne SFGP 2024

#### Présentation des travaux de Thèse

De: **KOFFI Yao Guy Landry**; doctorant 2ère Année à l'Université de Montpellier (France)

# Production de biochar pour la fabrication de bio filtre adsorbant à partir des déchets agricoles pour la filtration de l'eau : Cas de la Côte d'Ivoire

#### Comité d'encadrement

- o Patrick ROUSSET, Chercheur HDR (CIRAD), Directeur de thèse
- Jean Michel COMMANDRE Chercheur (CIRAD), Encadrant
- Capucine DUPONT, Enseignant-chercheur HDR (IHE Delft), Encadrante

Date: Mardi 12 Mars 2024

### Plan de la Présentation

Introduction

Problématique & Question de

recherche

Méthodologie

Résultats

**Conclusion** 



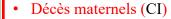
#### Introduction

#### Accessibilité et qualité de l'eau potable en Cote d'Ivoire en particulier



✓ ODD cible 6.1 << D'ici à 2030, assurer l'accès universel et équitable à l'eau potable, à un coût abordable >>

Révision


2022



✓ Le monde est loin d'être sur la bonne voie pour atteindre les ODD d'ici à 2030

% Population n'ayant pas accès à des services d'alimentation en eau potable gérés en toute sécurité (BM, OMS, UNICEF; rapport publié 23 janvier 2023)





✓ 2000 : 3.6 % contre 2020 : 4.4 %

• Risque de décès maternel au cours de la vie (CI)

✓ 2000 : 3 % contre 2020 : 2 %

(BM, OMS, UNICEF; rapport publié 23 janvier 2023)



Maladies



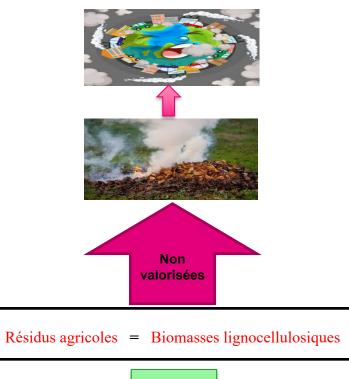




### Introduction

#### Gestion des résidus agricoles et opportunités






✓ Un des Piliers de l'économie ivoirienne : 16,7 % PIB en 2022 (Banque mondiale, 2023)



o Cultures vivrières et industrielles pratiquées en Côte d'Ivoire

 Résidus générés et considérés comme déchets











### Problématique & Question de recherche

- Problématique dans laquelle s'intègre cette thèse
  - ✓ Comment contribuer à l'amélioration de la qualité de l'eau et l'<u>accès</u> à l'eau potable en valorisant les <u>résidus agricoles</u> en Côte d'Ivoire ?

- Question de recherche
  - ✓ Peut-on/comment produire des <u>bio-adsorbants efficaces</u> pour la <u>filtration des eaux</u> par transformation thermochimique de résidus agricoles ?

### Méthodologie



Coques de cacao

(Origine : Côte d'Ivoire )



Coques d'arachides

(Origine : Côte d'Ivoire)

| PYROLYSE                              |                           |  |  |
|---------------------------------------|---------------------------|--|--|
| Alimentation du four en biomasse (kg) | 1                         |  |  |
|                                       | (Repartis en 100 g sur 10 |  |  |
|                                       | plateaux hauteur du lit : |  |  |
|                                       | 0.4 - 0.5  cm             |  |  |
| Vitesse de chauffage (°C/min)         | 10                        |  |  |
| Température (°C)                      | 400 ; 650 ; 900           |  |  |
| Temps de séjour (H)                   | 1;3                       |  |  |
| Débit d'azote (NL/min)                | 2                         |  |  |



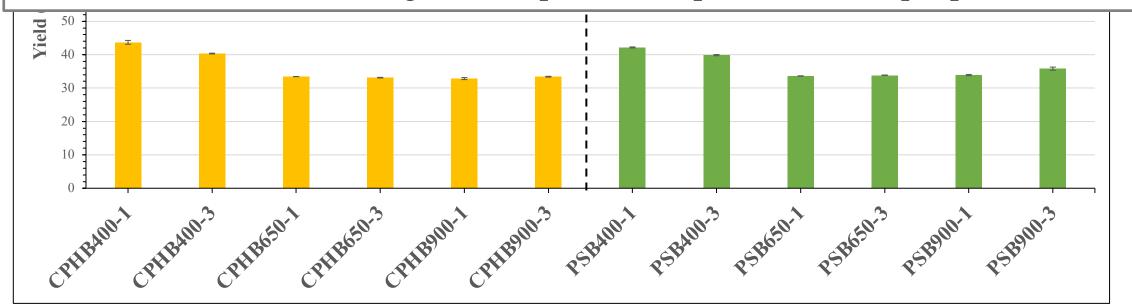
Four h = 670 mm $\emptyset_{\text{int}} = 252 \text{ mm}$ 



**Biochars** 



Charbon actif de coques de noix de coco




## **Résultats**Caractérisation des biomasses

✓ Rendement de production de biochars

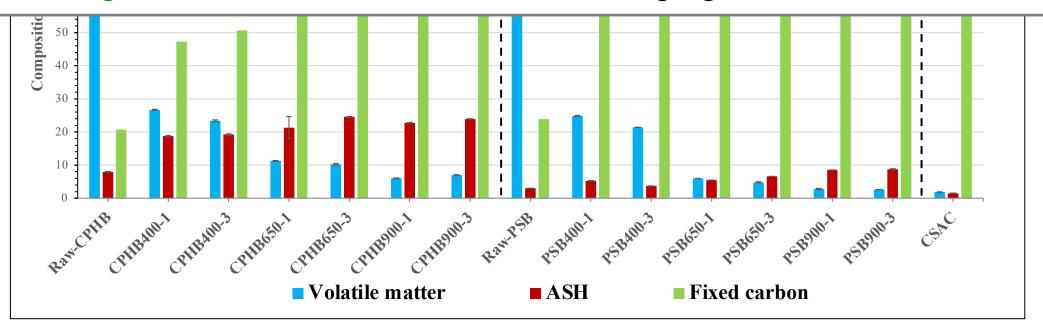


- 7 température ou temps de séjour  $\Rightarrow$  diminution du rendement en charbon
- Rendement en charbon légèrement plus faible pour arachide que pour cacao



#### Nomenclature

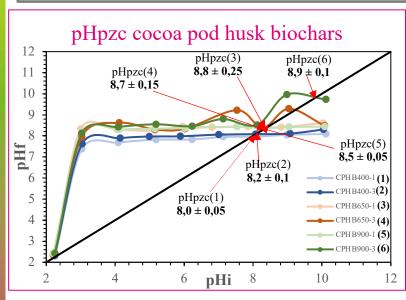
- CPHB400-1 : CPHB = Biochar de coque de cacao ; 400 = temp. de pyrolyse de 400°C ; 1 = temps de séjour de 1h
- PSB400-1 : PSB = Biochar de coques d'arachides ; 400 = temp. de pyrolyse de 400°C ; 1 = temps de séjour de 1h


### Résultats

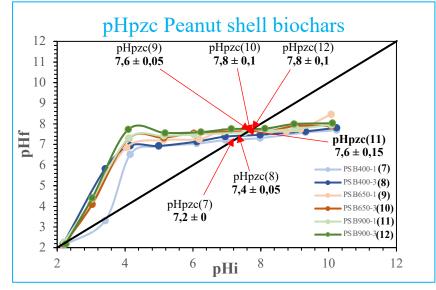
#### Caractérisation des biomasses et adsorbants (biochars et charbon actif commercial)

✓ Analyse immédiate des adsorbants

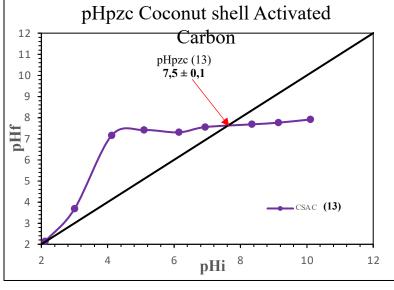
| Cocoa pod husk Raw and biochars | i      | Peanut shells Raw and biochars  | Coconut    |
|---------------------------------|--------|---------------------------------|------------|
|                                 | l<br>I | i canut sucus ixaw and biochars | shells A.C |


- température ou temps de séjour ⇒ diminution du taux de MV, et augmentation des taux de cendres et carbone fixe des charbons produits
- Effet important de la nature de biomasse sur les propriétés des charbons




### Résultats

#### Caractérisation des biomasses et adsorbants (biochars et charbon actif commercial)

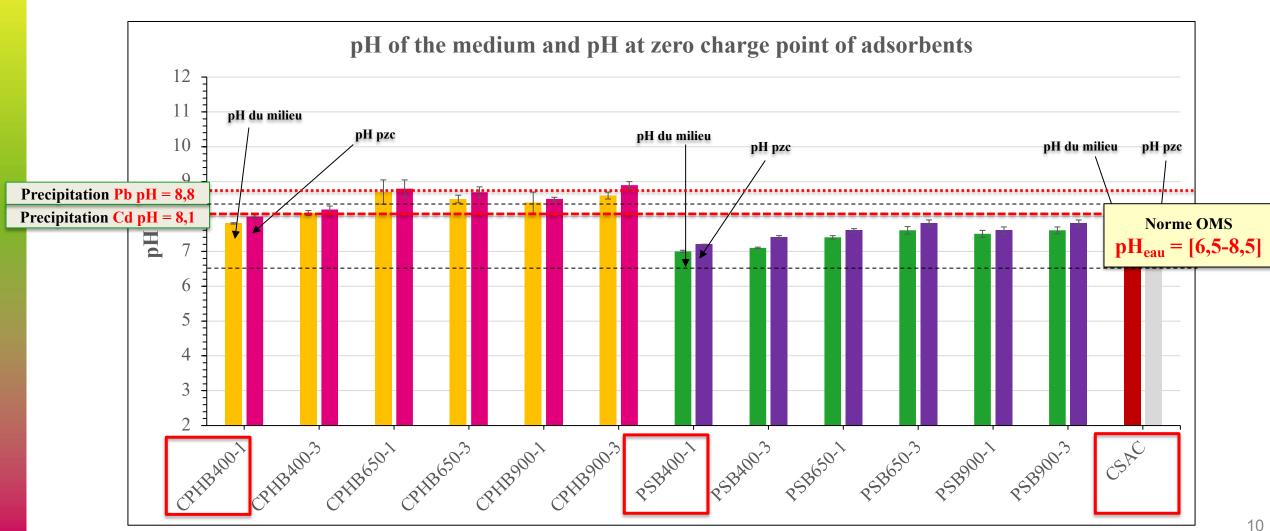

- ✓ pH au point de charge nulle (pHpzc)
- 7 température ou temps de séjour  $\Rightarrow$  augmentent le pHpzc des charbons produits
- Effet important de la nature de biomasse sur les pHpzc des charbons
- Tout les charbons possèdent des pHpzc basiques



pHpzc CPHB  $(8.0 \pm 0.05 - 8.9 \pm 0.1)$ 



pHpzc PSB  $(7,2 \pm 0 - 7,8 \pm 0,1)$ 




pHpzc CSAC  $(7.5 \pm 0.1)$ 

### Résultats

#### Caractérisation des biomasses et adsorbants (biochars et charbon actif commercial)

✓ pH au point de charge nulle (pHpzc)



### **Conclusion**

Les <u>conditions de pyrolyse</u> (température et temps de séjour) et le <u>type de biomasse</u> influencent la <u>composition</u> ainsi que les <u>propriétés d'adsorptions</u> des biochars

Les <u>adsorbants</u> qui semblent <u>mieux adaptés à l'élimination par adsorption</u> des ions Pb<sup>2+</sup> et Cd<sup>2+</sup> en solution aqueuse sont les biochars produits à plus faibles températures et temps de séjour (CPHB400-1 et le PSB400-1) et le charbon actif commercial de coque de noix de coco (CSAC)











